Segmentation of subcortical brain structures using fuzzy templates.

نویسندگان

  • Juan Zhou
  • Jagath C Rajapakse
چکیده

We propose a novel method to automatically segment subcortical structures of human brain in magnetic resonance images by using fuzzy templates. A set of fuzzy templates of the structures based on features such as intensity, spatial location, and relative spatial relationship among structures are first created from a set of training images by defining the fuzzy membership functions and by fusing the information of features. Segmentation is performed by registering the fuzzy templates of the structures on the test image and then by fusing them with the tissue maps of the test image. The final decision is taken in order to optimize the certainty in the intensity, location, relative position, and tissue content of the structure. Our method does not require specific expert definition of each structure or manual interactions during segmentation process. The technique is demonstrated with the segmentation of five structures: thalamus, putamen, caudate, hippocampus, and amygdala; the performance of the present method is comparable with previous techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Neuro-fuzzy Approach for Segmentation of Subcortical Brain Structures

Abstract Segmentation of the brain internal structures is an important and a challenging task due to their complex shapes, partial volume effects, low contrast and anatomical variability between subjects. This paper presents a Hybrid Intelligence approach that automatically segments the deep brain internal structures from brain MRI images. This technique combines spatial information from anatom...

متن کامل

Learning Likelihoods for Labeling (L3): A General Multi-Classifier Segmentation Algorithm

PURPOSE To develop an MRI segmentation method for brain tissues, regions, and substructures that yields improved classification accuracy. Current brain segmentation strategies include two complementary strategies. Multi-spectral classification techniques generate excellent segmentations for tissues with clear intensity contrast, but fail to identify structures defined largely by location, such ...

متن کامل

Topology Preserving Tissue Classification with Fast Marching and Topology Templates

This paper presents a novel approach for object segmentation in medical images that respects the topological relationships of multiple structures as given by a template. The algorithm combines advantages of tissue classification, digital topology, and level-set evolution into a topology-invariant multiple-object fast marching method. The technique can handle any given topology and enforces obje...

متن کامل

Hierarchical fuzzy segmentation of brain MR images

In brain magnetic resonance (MR) images, image segmentation and 3D visualization are very useful tools for the diagnosis of abnormalities. Segmentation of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is the basic process for 3D visualization of brain MR images. Of the many algorithms, the fuzzy c-means (FCM) technique has been widely used for segmentation of brain MR image...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 28 4  شماره 

صفحات  -

تاریخ انتشار 2005